BASAVESHWAR ENGINEERING COLLEGE, BAGALKOT

COURSEPLAN- UEE505C

Title of Course	:	Power Systems - II	Course Code	:	21UEE505C
Credits	•••	3	Contact Hours/ Week	•••	3
Total Hours		40	Tutorial Hours	:	
CIE Marks	:	50	SEE Marks	:	50
Semester	••	V	Year	:	2023-2024

Course Objectives:

	The Course objectives are:
1	To convert given single line diagram to equivalent per unit reactance diagrams on the base
	of givenMVA and KV values
2	To analyse voltage and current components to obtain sequence networks using symmetrical
	components
3	To analyse different types of unsymmetrical faults on power system
4	To determine the stability of power system using the basics of equal area criterion/ swing
	equation

Course Outcomes:

	At the end of the course the student should be able to:
1	Represent power system networks as per unit reactance diagrams on the base of
	givenMVA and KV values
2	Assess phase & line components of voltage/current and to draw the positive,
	negative& sequence networks using symmetrical components
3	Carry out analysis of unsymmetrical faults (LG,LL,LLG) to determine fault currents
	when fault occurs at generator terminals/in power systems networks
4	Assess stability of power system under different types of disturbances by applying
	equal area criterion/solving the swing equation

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		P01	P02	PO3	PO4	PO5	90d	P07	P08	60d	PO10	P011	P012	PSO1	PSO2	PSO3
	PO's CO's															
The s	students will be able to):														
1	UEE505C.1	3	1	1	1		1				1		1	2		1
2	UEE505C.2	3	2	1	1						1		1	2		2
3	UEE505C.3	3	2	2	2	1		1	1		1		1	2		2
4	UEE505C.4	3	3	3	2	1			1	1	1	1	2	1	1	2

Competencies Addressed in the course and Corresponding Performance Indicators

PO		Competency	Performance Indicators							
1	1.3	Demonstrate competence in	1.3.1	Apply elements of electrical						
		engineering fundamentals		engineering principles and laws						
	1.4	Demonstrate competence in Electrical	1.4.1	Apply discipline specific laws and						
		engineering knowledge		principles to solve an engineering						
				problem						
2	2.1	Demonstrate an ability to identify and	2.1.1	Evaluate problem statements and						
		characterize an engineering problem		Identify objectives						
4	4.1	Demonstrate an ability to conduct	4.1.1	Define a problem for purpose of						
		investigations of technical issues		investigation, its scope and						
		consistent with their level of		importance						
		knowledge and understanding								
	4.3	Demonstrate an ability to critically	4.3.1	Use appropriate procedures, tools						
		analyze data to reach a valid		and techniques to collect and analyse						
		conclusion		data						

Programme Outcome: Any of 1 to 12 PO's:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. **PO2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

		60 /-		PI
SI.	Unit Learning Outcome (ULO)	CO's	BLL	addressed
	Unit – I	I	1	
1.	Students shall be able to represent power system components using standard symbols	1	1	1.4.1
2.	Students shall be able to convert ohmic values of impedances to per unit values of single phase and three phase components	1	1	1.3.1
3.	Students shall be able to appreciate and experience the advantages of per unit system calculations	2	2	2.1.1
4.	Students shall be able analyse the 3 phase short circuit conditions - Sub transient, Transient and Steady state reactance	2	3	4.1.1
5.	Students shall be able to calculate Short circuit currents and Reactance of synchronous machines on load and no load	2	2	4.3.1
	Unit – II			
6.	Students shall be able to define sequence components for 3- Phase unbalanced power systems	2	2	1.4.1
7.	Students shall be able to make use of operator "a" and its properties in evaluation of symmetrical components	2	3	2.1.1
8.	Students shall be able to deduce expressions for sequence components	2	4	4.3.1
9.	Students shall be able to carry out phase shift of symmetrical components in star delta transformer bank. Unit –III	2	4	4.3.1
10.	Students shall be able to handle various unsymmetrical fault at the terminals of unloaded generator	3	1	4.1.1
11.	Students shall be able to analyse unsymmetrical fault on unloaded power systems	3	2	4.3.1
12.	Students shall be able to analyse Open conductor faults in power system.	3	3	4.3.1
	Unit –IV			
13.	Students shall be able to classify power system stability conditions.	4	2	2.1.1
14.	Students shall be able to describe the relative motion of the rotor with respect to stator field as a function of time (swing equation)	4	3	4.3.1
15.	Students shall be able to deduce power angle equation for salient and non-salient pole synchronous machines.	4	3	4.1.1
16.	Students shall be able to carry out transient stability analysis	4	4	4.1.1

Unit Learning Outcomes (ULO):

	using equal area criterion			
17.	Students shall be able to deduce expression for critical clearing	4	3	4.3.1
	angle			
18.	Students shall be able to list methods to improve stability of	4	2	2.1.1
	power system.			

Course Content:

Hours Required	Topic to be covered	Mode of Delivery
01	Power System Representation: Introduction, Standard symbols	Chalk & Talk, Ppt
01	of power system components, Single line diagram,	Challs & Talls Dat
01	Per unit system Per unit impedance of 3 phase components	Chalk & Talk, Ppt
01	Change of base, Per unit impedance diagram, Advantages of per unit system calculations.	Chalk & Talk, Ppt
01	Problem solving	Chalk & Talk, Discussions
01	Problem solving	Chalk & Talk, Discussions
01	Symmetrical Three Phase Faults: 3 - phase short circuit at the	Chalk & Talk, Ppt
	terminals of unloaded generator, Sub transient, Transient and Steady state reactance	
01	Transients on a transmission line	Chalk & Talk, Ppt
01	Short circuit currents and Reactance of synchronous machines on load and no load	Chalk & Talk, Ppt
01	Short circuit MVA	Chalk & Talk, Ppt
01	Problem solving	Chalk & Talk, Discussions
01	Symmetrical Components: Definition of sequence components for 3-Phase unbalanced power systems, Operator "a" and its properties	Chalk & Talk, Ppt
01	Expressions for sequence components	Chalk & Talk, Ppt
01	Phase shift of symmetrical components in star delta transformer bank.	Chalk & Talk, Ppt
01	Problem solving	Chalk & Talk, Discussions
01	Problem solving	Chalk & Talk, Discussions
01	Sequence Networks: 3- Ph power in terms of sequence components, voltage drop due to sequence currents	Chalk & Talk, Ppt
01	Sequence impedance and sequence networks of power system elements (Alternator, Transformer and Transmission line)	Chalk & Talk, Ppt
01	Positive, negative and zero sequence networks of power system elements.	Chalk & Talk, Ppt
01	Problem solving	Chalk & Talk, Discussions
01	Problem solving	Chalk & Talk, Discussions
01	Unsymmetrical Fault at the Terminals Unloaded Generator:	Chalk & Talk, Ppt
01	L-G, L-L fault with and without fault impedance at the terminals of unloadedgenerator	Chalk & Talk, Ppt
01	L-L-G fault with and without fault impedance at the terminals of unloadedgenerator	Chalk & Talk, Ppt
01	Connection of sequence network and fault currents.	Chalk & Talk, Ppt

01	Problem solving	Chalk & Talk, Discussions
01	Unsymmetrical Faults on Power Systems: L-G, L-L faults on	Chalk & Talk ,Ppt
	unloaded power systems	
01	L-L-G faults on unloaded power systems	Chalk & Talk ,Ppt
01	Open conductor faults in power system	Chalk & Talk ,Ppt
01	Problem solving	Chalk & Talk, Discussions
01	Problem solving	Chalk & Talk, Discussions
01	Transient Stability Analysis: Classification of Power System	Chalk & Talk ,Ppt
	Stability, Steady Rotor dynamics	
01	Swing equation, Solution of swing equation by numerical	Chalk & Talk ,Ppt
	techniques	
01	Power angle equation for salient pole synchronous machines	Chalk & Talk ,Ppt
01	Power angle equation for non-salient pole synchronous	Chalk & Talk ,Ppt
	machines.	
01	Problem solving	Chalk & Talk, Discussions
01	Equal Area Criterion: Stability analysis for sudden change in	Chalk & Talk ,Ppt
	mechanical input power	
01	3- ph fault on Generator terminals and on transmission line	Chalk & Talk ,Ppt
01	Expression for critical clearing angle	Chalk & Talk ,Ppt
01	Methods to improve stability of power system.	Chalk & Talk ,Ppt
01	Problem solving	Chalk & Talk, Discussions

Review Questions:

	Review Questions
1.	Show that the p.u impedance of a two winding transformer is same whether
	referred to primary or secondary?
2.	List the advantages of per unit system?
3.	Give the sketch of short circuit current waveform of a synchronous machine and
	hence define the various reactance's?
4.	With the oscillogram of the short circuit current of a synchronous machine,
	define direct axis synchronous reactance, transient and sub transient reactance?
5.	Define per unit quantity. Mention its advantages and also show that per unit
	reactance is same for both HV and LV side of a transformer?
6.	Define sequence components and derive the expressions for the same interms of
	line currents of a3-phase system.
7.	Show that a set of balanced voltages will have only positive sequence voltages.
8.	The currents in lines b and c of a 3-phase star connected load areI _b =(5+j3)A, I_c =(2-
	j4)Amp. Under these conditions, the neutral wire carries (1-j2)Amp. Calculate the
	sequence components of line currents.
9.	Derive an expression for the complex power interms of sequence components of
	voltages and currents in a 3-phasesystem

10. Draw and explain the zero-sequence network of 3-phase transformer with

following configurations:i)star-delta(neutral of star isolated), ii)star delta(neutral of star solidly earthed), iii)delta-delta

- 11. Prove that in symmetrical system currents of a given sequence produce voltage drops of the same sequence only.
- 12. Establish the relation between the line and phase components of symmetric components in star connected system.
- 13. Establish the relation between the line and phase components of symmetric components in delta connected system.
- 14. Derive the expression for fault current when Single Line to Ground fault (LG), Line to Line fault (LL) and Double Line to Ground fault (LLG) takes place at the terminals of unloaded generator without any fault impedance.
- 15. Derive the expression for fault current when Single Line to Ground fault (LG), Line to Line fault (LL) and Double Line to Ground fault (LLG) takes place through the fault impedance at the terminals of unloaded generator

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/		
Case Study/ Course Project/	10	10
Term Paper/Field Work		
SEE	100	50
Total	150	100

Smt. Sunita Tambakad

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOT

COURSEPLAN

Title of Course	•••	Power Electronics	Course Code	:	21UEE506C
Credits	•••	03	Contact Hours/ Week	•••	03
Total Hours	•••	40	Tutorial Hours	•••	-
CIE Marks		50	SEE Marks	:	50
Semester	:	v	Year	:	2023-24

Prerequisites:

Course Objectives:

	The Course objectives are:
1	To explain the application of power electronics, different types of power electronic circuits and their peripheral effects.
2	To analyze the different power semiconductor switches based on their performances and switching characteristics.
3	To understand the various protection techniques used for power switches in industrial applications.
	To explain the design, analysis techniques, performance parameters and characteristics of controlled rectifiers, DC-DC, DC-AC converters and Voltage controllers.

Course Outcomes:

	At the end of the course the student should be able to:
1	Select suitable power switches, heat sinks and power converters for industrial applications.
2	Investigate performance of the power switches-based on switching characteristics, power converters based on performance indices
3	Compute power loss in power switches and power converters, average and rms voltage, average and rms currents, ripple factors and harmonic components of power converters
4	Design various components of power converters employed in industrial application

SI.	CourseOutcomes															
		P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
1	21UEE506C.1	3							1		1		1	2	1	2
2	21UEE506C.2	3	3						1		1		1		2	
3	21UEE506C.3	3	3	2	1	1			1		1		1		3	
4	21UEE506C.4	3	3	2	2	1			1		1		2	2	2	2

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Unit Learning Outcomes (ULO):

SI.	Unit Learning Outcome (ULO)	CO's	BLL		
	Unit -I				
1.	Students shall be able to understand the importance of power electronics in industrial applications.	01	1		
2.	Students shall be able to understand and compare various power electronic circuits for controlling the electric power.	01	1		
3.	Students shall be able to understand the characteristics and specifications of various types of power switching devices.	01	1		
4.	Students shall be able to understand the working principle of power BJTs and power MOSFETs.	01	1		
5.	Students shall be able to understand the steady-state and switching characteristics of power transistors.	01	1		
6.	Students shall be able to understand the various losses of a power transistor.	01	1		
7.	Students shall be able to understand the importance of cooling methods, heat sinks and snubber circuits for power electronic switches.	02	1		
8.	Students shall be able to understand the performance of thyristor through static and switching characteristics.	02	2		
9.	Students shall be able to understand the concept of two transistor model as a thyristor.	01	2		
10.	Students shall be able to understand the di/dt and dv/dt protection of a thyristor.				
	Unit -II				
11.	Students shall be able to understand the various classifications of rectifiers.	01	2		
12.	Students shall be able to understand the principle of operation of phase controlled converter operation.	01	2		
13.	Students shall be able to understand the operation of single phase half and full wave controlled rectifiers.	01	1		
14.	Students shall be able to solve the numerical belongs to the single phase half wave and full wave controlled rectifiers.	03	3		
15.	Students shall be able to understand the concept of semi converters and full converters using thyristors.	02	2		
16.	Students shall be able to understand the concept of three phase half wave rectifier with R, R-L and RLE load.	03	2		
17.	Students shall be able to understand the concept of three phase full wave rectifier with R, R-L and RLE load.	02	3		
18.	Students shall be able to understand the concept of three phase semi converter and full converter with R, R-L and RLE load.	02	3		
19.	Students shall be able to understand the performance evaluation of a controlled rectifier.	02	3		
	Unit-III				
20.	Students shall be able to understand the meaning of commutation in converters.	02	1		
21.	Students shall be able to differentiate the natural and forced commutation in converters.	03	2		
22.	Students shall be able to understand different types of forced commutation.	02	1		
23.	Students shall be able to understand the importance of DC-DC converters in industrial applications.	01	2		
24.	Students shall be able to understand the principle operation of DC-DC converters.	02	1		
25.	Students shall be able to understand the 4 quadrant operation of DC-DC converters.	02	1		
	1	1			

26.	Students shall be able to understand the principle operation of various choppers.	02	1		
27.	Students shall be able to understand the operation of Buck, Boost, Buck Boost and Fly back converters.	03	1		
28.	8. Students shall be able to solve the numerical on DC-DC converters.				
	Unit-IV				
29.	Students shall be able tounderstand the different types of inverters.	01	1		
30.	Students shall be able to understand the principle operation of half bridge and full bridge inverter with R and R-L load.	02	2		
31.	Students shall be able to understand the three phase inverter configuration with 120 ⁰ and 180 ⁰ mode of operation.	02	1		
32.	Students shall be able to understand the voltage control of single phase inverter with single, multiple and sinusoidal pulse width modulation.	02	1		
33.	Students shall be able to understand operation principle of ON-OFF control and phase control of AC voltage controllers.	02	1		
34.	Students shall be able to understand operation single phase half wave and full wave AC voltage controllers with R and RL loads.	02	1		

ProgrammeOutcomeswithRespectiveCompetencies&PerformanceIndicators

PO	PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,							
an	andan engineering specialisationforthesolutionofcomplexengineeringproblems.							
	Competency	PI	Indicators					
1.1	Demonstrate the competence in solvinge	1.1.1	Applyfundamentalsofmathematicstosolveproblems					
	ngineeringmathematicalproblems	1.1.2	Apply advancedmathematical techniquestomodellingand problemsolvinginelectricalengineering					
1.2	Demonstrate the competence in basic sciences	1.2.1	Applylawsofnaturalsciencetoanengineering problem					
1.3	Demonstrate competence in engineeringfundamentals	1.3.1	Applyelementsofelectricalengineeringprinciplesandlaws					
1.4	DemonstratecompetenceinElectrical engineeringknowledge	1.4.1	Applydisciplinespecificlawsandprinciplestosolveanengineeringpro blem					

PO2:Problem analysis:Identify, formulate, research literature, and analyse complex engineering problemsreaching substantiated conclusions using first principles of mathematics, natural sciences, and engineeringsciences.

	Competency	PI	Indicators
2.1	Demonstrate an ability to identify and cha	2.1.1	Evaluate problem statements and Identify objectives
	racterizeanengineering problem	2.1.2	Identifyengineeringsystems, variables, and parameters to solve the p
			roblems
		2.1.3	Identify the mathematical, engineering and other
			relevantknowledgethatapplies toagivenproblem
2.2	Demonstrate an ability to formulate	2.2.1	Reframecomplexproblemsintointerconnectedsub-problems.
	asolution plan and methodology for	2.2.2	Identify, assemble and evaluate information and resources.
	anengineeringproblem	2.2.3	Identifyexistingprocesses/solutionmethodsforsolvingtheproblem
			, including justified approximations and assumptions
		2.2.4	Compareandcontrastalternativesolution
			processestoselect the best process.
2.3	Demonstrateanabilitytoformulateandi	2.3.1	Combinescientificandengineeringprinciplestoformulatemodels(m
	nterpret asystem/model		athematicalorotherwise) of a system or process that is appropriate int
			erms of applicability and required accuracy.

		2.3.2	Identifyassumptions(mathematicalandphysical)necessarytoallow modelling of asystematthelevelof accuracy required.
2.4	Demonstrateanabilitytoexecuteasoluti on, process and analyse results	2.4.1	Applyengineeringmathematicsand computations to solve (form&an alyse) mathematical models.
		2.4.2	Produce and validate results throughs kilful use of contemporary engineering tools and models
		2.4.3	Identify sources of error in the solution process, and limitations of the solution.
		2.4.4	Extract desired underst and ing and conclusions consistent with object ives and limitations of the analysis

PO3: Design/Development of Solutions: Design/development of solutions: Design solutions for complexengineering problems and design system components or processes that meet the specified needs withappropriateconsiderationforpublichealthandsafety, and cultural, societal, and environmental considerations.

	Competency	PI	Indicators
3.1	Demonstrateanabilitytodefineacomplex open-endedprobleminengineeringterms	3.1.1	Recognize that good problem definition assists in the design process
		3.1.2	Elicitanddocumentengineeringrequirementsfrom Stakeholders
		3.1.3	Synthesizeengineeringrequirementsfromareviewof the State of the Art
		3.1.4	Extract engineering requirements from relevant engineeringCodesandStandards
		3.1.5	Explore and synthesize engineeringrequirements fromlarger social andprofessional concerns
		3.1.6	Determinedesignobjectives, functional requirements and arrive at specifications
3.2	Demonstrateanabilitytogenerateadivers esetofalternativedesignsolutions	3.2.1	Apply formal idea generation tools to develop multipleengineeringdesignsolutions
		3.2.2	Buildmodels, prototypes, etc., to develop diverses et of designs olutions
		3.2.3	Identify the suitable criteria for evaluation of alternatedesignsolutions
3.3	Demonstrateanabilitytoselecttheoptimal design scheme for further development		Applyformalmulti- criteriadecisionmakingtoolstoselectoptimalengineeri ngdesignsolutionsforfurther development
		3.3.2	Consultwithdomainexpertsand stakeholderstoselectcandidateengineering designsolutionforfurtherdevelopment
3.4	Demonstrateanabilitytoadvanceanengin eeringdesigntodefinedend state	3.4.1	Refineaconceptualdesignintoadetaileddesign withintheexistingconstraints(oftheresources)
		3.4.2	Generates information through appropriate tests to improve, or revised esignstates

PO4:Conductinvestigationsofcomplexproblems:Useresearch-basedknowledgeandresearchmethods includingdesignofexperiments, analysis and interpretation of data, and synthes is of the information to provide valing conclusions.

luc	0111111111111.		
	Competency	PI	Indicators
4.1	Demonstrateanabilitytoconductinve	4.1.1	Defineaproblem for purpose of investigation, its scope and
	${\it stigations of technical is suesconsisten}$		importance
	twith their level of knowledge and und	4.1.2	Relatemodernengineeringexperimentationincludingexperimentdesi
	erstanding		gn, system calibration, data acquisition, analysis and
			presentation
		4.1.3	Applyappropriate instrumentation, and/orsoftware tools to make measurements of physical quantities
		4.1.4	Establishorvalidatearelationshipbetween measureddataand underlyingphysicalprinciples.
4.2	Demonstrateanabilitytodesignexper	4.2.1	Developanddesignexperimental approach, specify appropriate equipm
	imentstosolveopenendedproblems		ent and procedures, implement the seprocedures, and interpret the result of the second seco
			tingdatatocharacteriseanengineeringmaterial,
			component,orsystem.
		4.2.2	Understand the importance of statistical design of experiments and choo
			seanappropriate experimental design plan based on the study
			objectives
4.3	Demonstrate an ability to criticallyanalyzedatatoreachavalidco	4.3.1	Use appropriate procedures, tools and techniques to collect and analysed at a
	nclusion	4.3.2	Critically analysed at a fortrends and correlations, stating possible errors and limitations
		4.3.3	Representdata (intabularand/orgraphicalforms) soastofacilitate analysisandexplanationofthedata, anddrawconclusions
		4.3.4	Synthesize information and knowledge about the problem from the raw data to reach appropriate conclusions

PO5:Moderntoolusage:Create,select,andapplyappropriatetechniques,resources,andmodernengineering and IT tools including prediction and modelling to complex engineering activities with anunderstandingofthelimitations.

	Competency	PI	Indicators
5.1			Identifymodernengineeringtools, techniques and resources for engineering activities
	andresources	5.1.2	Create/adapt/modify/extendtoolsandtechniquestosolve problems
5.2	Demonstrate an ability to select andapplydisciplinespecifictools,techni ques andresources		Identifythestrengthsandlimitationsoftoolsfor(i)acquiring information,(ii)modellingandsimulation,(iii)monitoringsystemperf ormance, and(iv)creating engineering designs.
		5.2.2	Demonstrate proficiency in using computing, mathematical, circuitsimulation, and document presentation/preparations of tware. (MATLAB/Scilab, PSPICE, SABER, PROTEUSs of tware tools, AutoCAD, project management tools, Latex and others)
5.3	Demonstrateanabilitytoevaluatethesu	5.3.1	Identifylimitations and validate tools, techniques and resources
	itabilityandlimitationsofthetools usedtosolveanengineering problem	5.3.2	Verify the credibility of results from tool use with reference to the accuracy and limitations, and the assumptions inherent in the iruse.

<u>PO6: The engineer and society:</u>Apply reasoning informed by the contextual knowledge to assess societal,health, safety, legal and cultural issues and the consequent responsibilities relevant to the professionalengineeringpractice.

	Competency	PI	Indicators
6.1	Demonstrate the ability to describe engineering rol esinabroader context, e.g. aspertains to the environment, health, safety, and public welfare	6.1.1	Identify and describe various engineering roles;particularlypertainingtoprotectionofthep ublicand publicinterest
6.1	Demonstrate an understanding of professionalengineeringregulations,legislationa ndstandards	6.2.1	Interpretlegislation, regulations, codes, and standards relev ant to electrical and electronics engineering discipline (such a sIEEE) and explainits contribution to the protection of the public

<u>PO7: Environment and sustainability:</u>Understand the impact of the professional engineering solutions insocietalandenvironmentalcontexts, and demonstrate the knowledge of, and need for sustainable developmen

. .					
	Competency	PI	Indicators		
7.1	.1 Demonstrate an understanding of the impactofengineeringandindustrialpracticeons				Identifyrisks/impactsinthelife-cycleofanengineering productoractivity
	ocial, environmental and economic contexts	7.1.2 Demonstrateanunderstandingoftherelationship e technical, socio-economic and env dimensionsofsustainability			
7.2	7.2 Demonstrateanabilitytoapplyprinciplesofsust ainabledesignanddevelopment		Describe management techniques for sustainable development		
			Applyprinciplesofpreventiveengineeringandsustainable development to an engineering activity or product relevanttoElectricalandElectronicsEngineering		

<u>PO8:Ethics:</u>Applyethicalprinciplesandcommittoprofessionalethics, responsibilities and norms of the engineering practice.

	Competency	PI	Indicators
8.1	Demonstrateanabilitytorecognizeethical dilemmas	8.1.1	Identifysituations of unethical professional conduct and propose ethical alternatives
8.2	Demonstrate an ability to	8.2.1	Identifytenets of the IEEE professional code of ethics
			Examineandapplymoralðicalprinciplestohistorically famous casestudies

PO9:Individualandteamwork:Functioneffectivelyasanindividual,andasamemberorleaderindiverseteams, and inmultidisciplinary settings.

	Competency	PI	Indicators
9.1	Demonstrate an ability to formate a mand define arole for each member	9.1.1	Recognizeavarietyofworkingandlearningpreferences; appreciatethevalueof diversityinateam
		9.1.2	Implement the norms of practice (e.g. rules, roles, charters, agendas, etc.) of effective teamwork, to accomplish ago al.
9.2	Demonstrateeffectiveindividual&teamoperat 9.2 ions communication, problem solving,resolution&leadershipskills		Demonstrate effective communication, problems olving, conflict resolution and leaderships kills
9.3	Demonstratesuccessinateam-basedproject	9.3.1	Presentresultsasateam, with smooth integration of contributions from all individual efforts

<u>PO10:Communication:</u>Communicate effectively on complexengineering activities with the engineering commun ity and with the society at large, such as, being able to comprehend and write effective reports and design documentation. make effective presentations. and give and receive clear instructions

	Competency	PI	Indicators	
10.1	Demonstrateanabilitytocomprehendtechni cal literature and documentprojectwork.	10.1.1	Read, understand and interprette chnical and non-technical information	
		10.1.2	Produce clear, well-constructed, and well-supported writtenengineeringdocuments	
		10.1.3	3 Create <i>flow</i> in a document or presentation – a logical progression of ideass othat the main point is clear	
10.2	Demonstrate competence in listening,speaking,	10.2.1	Listentoand comprehend information, instructions, and viewpoint of others	
	andpresentation	10.2.2	Delivereffective or alpresentation stotechnical and non- technical audiences	
10.3	Demonstrate the ability to integratedifferentmodesofc	10.3.1	Createengineering-standardfigures, reports and drawings to complement writing and presentations	
	ommunication	10.3.2 Useavarietyofmediaeffectivelyto conveyames documentorapresentation		

PO11:Projectmanagementandfinance:Demonstrateknowledgeandunderstandingoftheengineeringandmana gement principles and apply these to one's own work, as a member and leader in a team, to manageprojects and inmultidisciplinary environments.

	Competency	ΡΙ	Indicators	
11.1	Demonstrateanabilitytoevaluatetheecono mic and financial performance of	11.1.1	Describevariouseconomicandfinancialcosts/benefitsof anengineeringactivity	
	anengineeringactivity	11.1.2	thefinancialstatusofanengineering project .2.2 Analyzeandselectthemostappropriateproposalbasedou	
11.2	DemonstrateandabilitytoCompareandcontr astthecosts/benefitsofalternate proposalsforanengineeringactivity	11.2.2	Analyzeand select the most appropriate proposal based on eco nomic and financial considerations.	
11.3			Identify the tasks required to complete an engineering activity, and the resources required to complete the tasks.	
	meandbudgetconstraints	11.3.2	Useprojectmanagementtoolsto scheduleanengineering projectsoastocompleteontimeandwithinbudget.	

PO12:Life-longlearning:Recognisetheneedforandhavethepreparationandabilitytoengagein independentandlife-longlearninginthebroadestcontextoftechnologicalchange.

	Competency	PI	Indicators	
12.1	Demonstrate an ability to identify gaps inknowledgeandastrategytoclosethesegaps		Describe the rationale behind the requirement for continuingprofessionaldevelopment	
		12.1.2	Identify deficiencies or gaps in knowledge anddemonstrateanabilitytosourceinformat obridgethe same	
12.2	Demonstrate an ability to Identify changingtrendsinengineeringknowledgean dpractice	12.2.1	Identifyhistoricpointsoftechnologicaladvanceinengineerin gthatrequirepractitionerstoseekeducationin ordertostayupdated	
		12.2.2	 Recognize theneed andbe ableto clearlyexplainwhyitisvitallyimportanttokeepupdatedreg dingnew developmentsinthefield 	
12.3	Demonstrateanabilitytoidentifyandaccess sourcesfor newinformation	12.3.1	Demonstrate an ability to source and comprehend technicallit erature and other credibles ources of information	

Course Content:

Day	Content	Mode of Delivery
1	Introduction of BJT and its application in power electronics, Basic structure of BJT, Input and output characteristics, steady state and transfer characteristics.	
2	Numerical on obtaining the base current for driving the saturation, computation of ODF, forced β , total power loss	
3	Transient model of BJT used as switch in power electronics, Numerical problem on obtaining average power, instantaneous power during delay time, rise time, storage time and fall time. Total power loss during switching operation	
4	Introduction of MOSFET, Basic structure of the MOSFET, Steady state output characteristics, transfer and switching characteristics	
5	Discussion on snubber circuit for limitation of di/dt and dv/dt, derivation of Ls and Cs. Problems on computation of Ls and Cs for critically damping and for various discharge currents	
6	Introduction to thyristors, Basic structure of thyristors, static characteristics of thyristors: forward blocking, forward conduction and reverse blocking and conduction. Importance of latching and holding currents	Chalk and Talk
7	Concept of regenerative process of thyristor is discussed using two transistor model, derivation of the anode current as a function of gate current. various Turn ON methods of thyristors. Switching characteristics of thyristor	
8	Discussion on di/dt and dv/dt limitation of the thyristors, concept of power derating circuits for the switches and numerical on power derating	
9	Introduction of phase-controlled rectifier, necessary of controlled rectifier, broad classification. Discussion on 1- phase half wave-controlled rectifier with R and R L load, derivation of average and rms voltage and average load current.	
10	Importance of freewheeling diode for R L load in phase-controlled rectifier, Numerical on half wave-controlled rectifier	
11	Full-wave controlled rectifier: midpoint and Bridge rectifier, Analysis of midpoint for R, R-L load	

	and its limitations	
12	Principle operation of fully controlled bridge rectifier for R, R-L load, derivation of average load	
12	voltage, current and RMS voltage.	
13	Introduction of phase-controlled rectifier, necessary of controlled rectifier, broad classification.	
15	Discussion on 1- phase half wave-controlled rectifier with R and R L load, derivation of average	
	and rms voltage and average load current.	
14	Importance of freewheeling diode for R L load in phase-controlled rectifier, Numerical on half	
	wave-controlled rectifier	
15	Full-wave controlled rectifier: midpoint and Bridge rectifier, Analysis of midpoint for R, R-L load	
	and its limitations	Mixed Mode
16	Principle operation of fully controlled bridge rectifier for R, R-L load, derivation of	
	average load voltage, current and RMS voltage.	
17	Principle operation of Half controlled Bridge converter (Symmetric and unsymmetric) for	
	R-L load, Analysis with suitable waveforms	
18	Derivation of performance parameter of the full bridge converters such Displacement	
	angle, current and voltage ripple factor, input power factor	
19	3- Phase full bridge controller converter, Discussion on the firing sequence for the	
	thyristor based on the phase sequence and line voltages of 3-phase supply, different	
	modes of operation and	
20	3- Phase full bridge controller converter, discussion of output voltage using waveform for	
	30, 60, 90 deg firing angle for R and R-L load	
21	Three phase Half controlled Bridge Converter for R-L load, Need and importance,	
	discussion on the nature of output voltage for 30° and 60° firing angle	
22	Commutation: Introduction, Broad classification of commutation, Class A: Self	
	commutation.	
23	Concept of Class- B commutation and Class-C commutation (Complimentary)	
	commutations	
24	Concept of Impulse and Resonant Commutations	
	Chopper: Introduction of chopper, application and classification of chopper	
26	Concept of Four Quadrant Chopper, Control strategies: Current limit control, TRC control.	
	Problems on control strategies	
27	Principal operation of Step up and Step-down chopper, derivation of average and rms	Mixed Mode
	value output voltage	
28	Concept of First Quadrant and Second Quadrant chopper: Discussion of operation of	
	circuit along with waveform. Applications of the above choppers	
29	Concept of Type-A and Type-B two quadrant chopper: Discussion of working operation of	
	the chopper along with waveforms	
30	Discussion of 4-Quadrant chopper, Detailed analyses of TYPE-A chopper, Derivation of	
	the expression I _{omin} and I _{omax}	
31	Derivation of Ripple current, Derivation of expression which relates the ripple current	
	variation with duty cycle. The curve relating condition for the continues and discontinues	
32	The numerical to check the load current continuity of the load current. Additional	
	problems on the TYPE-A chopper	
33	Concept of Fly Back converter, Concept of boost converter, derivation of output voltage,	
	ripple voltage and ripple current	
34		
54	Concept of buck converter, derivation of output voltage, ripple voltage and ripple	
	current, Numerical on buck and boost converter	

35	Introduction of Inverter, concept of half bridge and full bridge inverter for R and R-L load	
36	Derivation of Instantaneous output voltage, performance parameter of inverter.	
	Numerical on half bridge and full bridge inverter	
37	Methods of Voltage control for 1-phase inverter: PWM control – Single pulse width	
	modulation, multiple pulse width modulation and sinusoidal pulse width modulation	
38	Introduction of three phase converter, application and advantages three phase inverter,	
	classification of inverter based on conduction period of switch. Concept of 180 degree	
	and 120 degree conduction.	
	Principle operation of 180 degree conduction along with equivalent circuit and waveform	Mixed Mode
40	Principle operation of 120-degree conduction along with equivalent circuit and waveform	
41	Introduction of AC voltage controller, Single phase: Unidirectional or half wave controller,	
	Principle of on-off control and phase control, derivation of rms value of output voltage,	
	Application	
42	Bidirectional or Full wave controller for R load and R-L load, Different circuit topology of	
	bidirectional AC voltage controller	

Review Questions (Unit-Wise):

SI.	Review Questions	СО	BLL	PI
1	Mention the types of power electronic circuits. Explain the different power electronic circuits with neat circuit diagram. Show the input and output waveform.	1	1	1.3.1
2	With the circuit diagram and voltage waveforms, explain the control characteristics of (i). Thyristor (ii). GTO (III). MOSFET and (iv). BJT	1	1	1.3.1
3	With the neat circuit diagram and switching waveforms, explain switching characteristics of MOSFET.		1	1.2.1
4	Explain the switching limits of BJT.	1	1	1.2.1
5	List the types of MOSFETs. Explain with sketch and structure of n-channel enhancement type MOSFET.	2	1	1.3.1
6	Discuss di/dt and dv/dt protection in thyristor.	2	1	1.3.1
7	Using two transistor analogy, derive an expression for anode current of thyristor.	2	2	1.3.1
8	What are the issues to be addressed for the design of a power converter?	1	3	1.2.1
9	What are the peripheral effects of power electronic equipments?		3	1.2.1
10	The converter in Fig.10 is connected to a 120 V, 60 Hz supply and has a purely resistive load of R = 10 Ω . If the delay angle is $\alpha = \pi/2$, determine (a) the rectification efficiency (b). the form factor (c). the ripple factor (d). the TUF and (e). the peak inverse voltage of thyristor T1.	3	4	2.4.1
11	A single phase 220 V, 1 kW heater is connected to a half- wave controlled rectifier and fed from a 220 V, 50 Hz ac supply, Determine the power absorbed by the heater when the firing angle is i) $\alpha = 30^{\circ}$ and ii) $\alpha = 90^{\circ}$.	3	4	2.4.1
12	Write the advantage of freewheeling diode in single–phase half –wave controlled rectifier	2	2	2.4.2

	with RL load.			
13	Draw the circuit diagram of three – phase, half –wave controlled rectifier with R load and explain its operating principle with voltage and current waveforms. Determine the following parameters for R load with firing angle $\alpha = 60^\circ$: i) dc output voltage ii) Average dc load current iii) rms output voltage iv) rms load current.	4	3	2.4.2
14	Explain the different control strategies in DC-DC circuits?	1	1	1.1.1
15	With the help of a neat circuit diagram and associated waveforms, discuss the operation of Buck-Boost converter.	2	2	2.2.1
16	With help of neat circuit diagram and associated waveforms discuss the operation of a Buck converter in continuous conduction mode and discontinuous conduction mode.	2	2	1.2.1
17	Discuss the Principle of operation of forward and fly back converters in CCM.	2	1	2.2.1
18	Describe working of 3-Phase AC-AC regulators with R load only and draw the relevant waveforms.	2	1	1.3.1
19	Derive the expression for rms output voltage of bidirectional 1-phase ac voltage controller with RL load. And draw the relevant waveforms.	2	3	2.3.1
20	Explain the working of a 1-phase full bridge Inverter with RL load. Draw the relevant output waveform.	1	2	2.2.2
21	A single-phase PWM inverter is fed from a 220 V dc supply and it is connected to a RL load with R=10 ohms and L=10 mH. Determine the total harmonic distortion in the load current . Assume width of each pulse is $\pi/2$ and the output frequency is 50 Hz.	3	4	2.4.1

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Problem solving on switching					
characteristics of BJT, MoSFET and IGBT,	1.5	02, 03	1.1.2	1.1	01
Computation of Anode current of	1.5	02,03	1.1.2	1.1	01
thyristor, Controlled Rectifier					
Problem solving on Chopper,					
Commutation, Inverters and AC Voltage	1.5	02, 03	1.4.1	1.4	01
Regulator					
Quiz	1.0	01, 02	1.1.1	1.1	01
Quiz	1.0	01, 02		1.1	01
Mini-Project on MATLAB-Modelling and	5.0	02.04	5.2.1	5.2	05
SimulationsPWM Techniques of Inverter,	5.0	03, 04	5.2.2	5.2	05

Step-up and Step-down chopper				
	Step-up and Step-down chopper			

BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT

Model CoursePlan

Title of Course	:	Fundamentals of Wind Energy Conversion System	Course Code	:	21UEE516N
Credits	:	3	Contact Hours/ Week	•••	3
Total Hours	:	40	Tutorial Hours	:	40
CIE Marks		50	SEE Marks	:	100
Semester		v	Year	:	2023-24

Prerequisites:

Course Objectives:

	The Course objectives are:					
1	To identify the installed capacity and developments in wind energy conversion systems.					
2	To apply and analyse concepts and theory for assessment of wind energy resources					
3	To illustrate the aerodynamics and control mechanism of wind energy system					
4	To describe pros and cons of vertical and horizontal axis wind energy system					

Course Outcomes:

	At the end of the course the student should be able to:
1	List and define various parameters and features of wind energy conversion systems.
2	Explain various concepts and theory related to wind energy conversion systems.
3	Evaluate/calculate various parameters related to wind energy conversion systems.
4	Relate/articulate the concepts and theories related to wind energy conversion systems.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	22UEE136B.1	3	1	1			1	1	1		1	1	1	3	1	
2	22UEE136B.2	3	1	1	1		1	1	1		1		1	2	3	
3	22UEE136B.3	3	2	3	1							1	1	1	1	
4	22UEE136B.4	3	3	3	2				1				1	1		1

Competencies Addressed in the course and Corresponding Performance Indicators

P0	Competency	Indicators			
1	Recall key terms and concepts related to wind energy conversion systems.		 Define terms such as wind turbine, rotor, nacelle, pitch, and yaw. Identify the components of a typical wind energy conversion system. List the main types of wind turbines. 		
2	2 Comprehend the basic principles underlying wind energy conversion.		 Explain the relationship between wind speed and power generation. Describe the aerodynamic principles governing the operation of wind turbines. Interpret the impact of wind direction on turbine performance. 		
7	Apply engineering principles to solve problems related to wind energy conversion systems.		 Calculate the power output of a wind turbine given specific wind conditions. Propose adjustments to optimize the efficiency of a wind energy conversion system. Solve real-world problems related to the design and operation of wind turbines. 		
12	12 Analyze the performance and limitations of various wind energy conversion technologies.		 Evaluate the factors influencing the efficiency of horizontal and vertical axis wind turbines. Compare and contrast the advantages and disadvantages of different wind turbine aerodynamics. Analyze data from wind energy systems to identify trends and patterns. 		

Programme Outcome: Any of 1 to 12 PO's:

Assess the comparison of power implications of	• Describe the effectiveness of implementing wind energy projects in specific locations.
wind energy systems.	• Assess the environmental impact of wind energy systems
	compared to traditional energy sources.

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

SI.	Unit Learning Outcome (ULO)	CO's	BLL	PI addressed				
	Unit -l1							
Stu	Students shall be able to							
1.	Explain the historical development of wind energy from	1	1	1.1.1				
	ancient civilizations to the 20th century.							

Unit Learning Outcomes (ULO):

~		•		2.4.5
2.	Identify key milestones and technological advancements in early wind energy systems.	2	2	2.1.2
3.	Analyze the evolution of wind energy technology during the 20th century.	2	2	1.1.1
4.	Assess the major advancements and innovations in wind energy technology from the 1980s to the present.	2	2	1.1.1
5.	Analyze the geographical and environmental factors influencing wind patterns around the world.	2	2	1.4.1
6.	Describe the unique challenges and opportunities associated with offshore wind energy.	2	2	1.4.1
7.	Compare and contrast the advantages and disadvantages of wind energy with conventional power generation methods.	4	4	2.2.4
	Unit -II			
8.	Explain the spatial variation of wind resources and its	1	1	1.1.1
	significance in wind energy assessment.	_		
9.	Analyze the temporal variations in wind speed and direction, considering diurnal and seasonal patterns.	2	2	1.1.1
10.	Explain how understanding steady wind characteristics contributes to effective wind energy planning.	1	1	1.4.1
11.	Calculate Weibull parameters and use them in wind resource assessments	3	3	2.4.2
12.	Interpret vertical wind profiles for different types of terrain and their relevance to wind energy applications.	2	2	2.2.1
13.	Interpret wind roses to identify prevailing wind directions and their implications for wind energy projects.	2	2	2.2.1
14.	Evaluate the reliability and accuracy of different tools and models used in wind resource assessments.	4	4	2.4.2
	Unit -III			
15.	Define and calculate relative wind velocity in the context of	2	2	1.1.1
	wind turbine aerodynamics.			
16.	Analyze the importance of accurate wind flow modeling in predicting wind turbine performance.	2	2	1.1.1
17.	Apply axial momentum theory to calculate the induced velocity and thrust on a wind turbine rotor.	2	2	2.1.2
18.	Apply momentum theory for rotating wake to analyze the wake effect on downstream turbines in an array.	3	3	3.1.2
19.	Analyze the characteristics of different types of wind machines, including horizontal and vertical axis wind turbines.	2	2	2.1.2
	Unit -IV		· · · ·	
20.	Classify wind turbines based on various criteria such as axis orientation, number of blades, and application.	2	2	1.1.1
21.	Explain the function and role of each component in the overall operation of a wind turbine.	1	4	2.1.2
22.	Analyze the factors influencing the efficiency of wind energy conversion and extraction.	2	2	1.1.1
23.	Apply Betz's Law in numerical problems to determine the maximum theoretical efficiency of wind turbines.	2	2	2.4.1

24.	Analyze the Wind Power Generation Curve to understand the	3	3	4.3.4
	relationship between wind speed and power output.			

Course Content:

Hours Required	Topic to be covered	Mode of Delivery
01	Historical Development (BC – 20th Century)	Chalk and talk in
01	Historical Development (20th Century – 1980s)	classroom/Lecture combined
01	Recent Developments (1980s – present);	with discussions/Lecture with
01	The Nature of the Wind	a quiz/ Tutorial/
01		Assignments/
01	Origin of wind Wind Energy Potential	Demonstration/ Invited
01	Offshore Wind Energy	lectures/ Group Assignment/
01	Modern Wind Turbines	-
01	Wind Vs Conventional power generation	-
01	Wind Resource Assessment: Introduction	-
		-
01	Spatial variation Time variation	-
01		-
01	Characteristics of steady wind	-
01	Weibull wind speed distribution function	-
01	Vertical profiles of steady wind Wind rose	-
01		-
01	Energy content of wind	-
01	Resource assessment	-
01	Aerodynamics: Introduction	-
01	Aerofoil – Two dimensional theory	
01	Axial momentum theory	-
01	Stall control	-
01	Wind flow models – Wind flow pattern	-
01	Momentum theory for rotating wake	-
01	Savinous and Darrius types	4
01	Blade element theory	_
01	Strip theory; Tip losses and correction	_
01	Wind Machine Characteristics	_
01	Wind Turbines: Introduction	_
01	Classification of Wind Turbines	
01	Wind Turbine Components	_
01	Basic principles of wind energy extraction	
01	Extraction of wind turbine power(Numerical problems)- Weibull distribution	
01	Wind power generation curve-Betz's Law-Modes of wind power generation.	
01	Modes of wind power generation]

Review Questions:

Explain the principle of wind generation.141.1.1Write the advantages and disadvantages of wind electric power generation.222.1.2Writh ead diagram, explain power versus wind speed characteristics3	Review Questions							ULO	BLL	PI addressed			
generation.With neat diagram, explain power versus wind speed characteristics3Write a brief note on socioeconomic impact of wind electric power generation421.1.1Explain the historical development of wind energy conversion systems.521.1.1Explain how the wind speed distribution can be determined631.1.1Statistically.011.1.12.2.23456V123456F51015202025251.1.1Write a note of wake affect.With neat diagram, explain long term variability with respect to time variation1111.1.1Other wind speeds 3, 4, 5, 6, 7 m/s for a 	Explain the principle of wind generation.								1	4			
With neat diagram, explain power versus wind speed characteristics31Write a brief note on socioeconomic impact of wind electric power generation421.1.1Explain the historical development of wind energy conversion systems.521.1.1Explain how the wind speed distribution can be determined statistically.631.1.1Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.732.2.2Write a note of wake affect.811.1.1With neat diagram, explain long term variability with respect to to wind distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a scale.111.1.1With neat diagram, explain long term variability with respect to to time variation111.1.1With neat diagram, explain long term variability with respect to cale.14111.1.1With a short note on right of way for wind turbine electric graph of wind distribution curve on graph sheet with appropriate scale.14111.1.1Write a short note on right of way for wind turbine electric power plants.1911.4.111.4.1power plants.1911.1.11.1.11.1.11.1.1Write a short note on wind rose2111.4.11.4.1Explain the basic principles of wind energy extraction.1911.1.1Write a short note on wind rose21 </td <td colspan="7">Write the advantages and disadvantages of wind electric power</td> <td>2</td> <td>2</td> <td>2.1.2</td>	Write the advantages and disadvantages of wind electric power							2	2	2.1.2			
generationImage: space of the spa	With neat di	agram	, expla	in pow	er vers	sus wir	nd spee	ed cha	racteristics	3			
systems.Image: systems.Explain how the wind speed distribution can be determined statistically.631.1.1Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.732.2.2W123456F51015202025Write a note of wake affect.811.1.1With neat diagram, explain long term variability with respect to time variation1111.1.1Other wind turbines.12, 1 2, 1 2, 1 112.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1111.1.1Other wind speeds 3, 4, 5, 6, 7 m/s for a aOther wind stribution of the wind speeds 3, 4, 5, 6, 7 m/s for a aStribution of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.1.1Other wind speed 5, 4, 5, 6, 7 m/s for a 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.1.1Write a short note on right of way for wind turbine electric power plants.15,1611.4.1 <td></td> <td>ef note</td> <td>on sc</td> <td>cioeco</td> <td>nomic</td> <td>impa</td> <td>ct of w</td> <td>vind e</td> <td>ectric power</td> <td>4</td> <td>2</td> <td>1.1.1</td>		ef note	on sc	cioeco	nomic	impa	ct of w	vind e	ectric power	4	2	1.1.1	
statistically. Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale. 7 3 2.2.2 V 1 2 3 4 5 6 F 5 10 15 20 20 25 25 Write a note of wake affect. 8 1 1.1.1 With neat diagram, explain long term variability with respect to 11 1 1.1.1 With neat diagram, explain long term variability with respect to 11 1 1.1.1 Give brief Classification of wind turbines. 12, 1 2.1.2 13 Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale. 1 1.1.1 Write a short note on right of way for wind turbine electric power plants. 19 1 1.1.1 Briefly explain spatial variation of wind power electric power plants. 19 1 1.1.1 Write a short note on wind rose 21 1 1.4.1 Explain the basic principles of wind energy extraction.		histo	orical	develo	pment	of v	wind	energy	conversion	5	2	1.1.1	
Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.732.2.2W123456F51015202025Write a note of wake affect.811.1.1With neat diagram, explain global circulation of wind9,1011.1.1With neat diagram, explain long term variability with respect to time variation1111.1.1Other wind turbines.12,12.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.1.1Write a short note on right of way for wind turbine electric power plants.1911.4.1Write the merits and limitations of wind speed17,1811.4.1Write a short note on wind rose2111.4.1Write a short note on wind rose2111.4.1<	Explain hov	v the	wind	speed	disti	ributio	n can	be	determined	6	3	1.1.1	
site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale. V 1 2 3 4 5 6 F 5 10 15 20 20 25 Write a note of wake affect. 8 1 1.1.1 With neat diagram, explain global circulation of wind 9,10 1 1.1.1 With neat diagram, explain long term variability with respect to time variation 11 1 1.1.1 Give brief Classification of wind turbines. 12, 1 2.1.2 1 Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale. 14 1 1.1.1 Write a short note on right of way for wind turbine electric power plants. 1 1.4.1 1.4.1 Explain the basic principles of wind energy extraction. 19 1 1.1.1 Write a short note on wind rose 21 1 1.4.1 Explain the basic principles of wind energy extraction. 19 1 1.1.1 Write a short note on wind rose 21 1 1.4.1 <t< td=""><td>statistically.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	statistically.												
F51015202025Write a note of wake affect.Write a note of wake affect.811.1.1With neat diagram, explain global circulation of wind9,1011.1.1With neat diagram, explain long term variability with respect to time variation1111.1.1With neat diagram, explain long term variability with respect to time variation1111.1.1Give brief Classification of wind turbines.12,12.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the 	<td>site having s graph of wi</td> <td>shape f</td> <td>factor</td> <td>of 1.8</td> <td>and ca</td> <td>pacity</td> <td>factor</td> <td>of 1 a</td> <td>and draw the</td> <td>7</td> <td>3</td> <td>2.2.2</td>	site having s graph of wi	shape f	factor	of 1.8	and ca	pacity	factor	of 1 a	and draw the	7	3	2.2.2
Write a note of wake affect.811.1.1With neat diagram, explain global circulation of wind9,1011.1.1With neat diagram, explain long term variability with respect to time variation1111.1.1Give brief Classification of wind turbines.12, 1312.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the 		V	1	2	3	4	5	6					
With neat diagram, explain global circulation of wind9,1011.1.1With neat diagram, explain long term variability with respect to time variation1111.1.1Give brief Classification of wind turbines.12, 1312.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.4.1Write a short note on right of way for wind turbine electric power plants.15,1611.4.1Explain the basic principles of wind energy extraction.1911.1.1Write a short note on wind rose2111.4.1Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1		F	5	10	15	20	20	25	-				
With neat diagram, explain long term variability with respect to time variation1111.1.1Give brief Classification of wind turbines.12, 1312.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.1.1Write a short note on right of way for wind turbine electric power plants.15,1611.4.1Explain the basic principles of wind energy extraction.1911.1.1Write the merits and limitations of wind power electric power plants.2021.1.1Write a short note on wind rose2111.4.1Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	Write a not	e of w	l vake af	fect.						8	1	1.1.1	
time variation121Give brief Classification of wind turbines.12,1Jan12,1Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.141Write a short note on right of way for wind turbine electric 	With neat d	liagrar	n, exp	lain gl	obal c	ircula	tion o	fwind		9,10	1	1.1.1	
Give brief Classification of wind turbines.12, 1312.1.2Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.1.1Write a short note on right of way for wind turbine electric power plants.15,1611.4.1Briefly explain spatial variation of wind speed17,1811.4.1Explain the basic principles of wind energy extraction.1911.1.1Write a short note on wind rose2111.4.1Write a short note on wind rose2111.4.1Urite a short note on wind rose2111.4.1Urite a short note on wind rose2111.4.1With neat diagram, explain vertical profiles of steady wind2242.1.2Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	With neat o	diagra	m, exp	olain lo	ong te	rm va	riabili	ty wit	h respect to	11	1	1.1.1	
Lab 13Lab 13Determine the distribution of the wind speeds 3, 4, 5, 6, 7 m/s for a site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.1411.1.1Write a short note on right of way for wind turbine electric power plants.15,1611.4.1Briefly explain spatial variation of wind speed17,1811.4.1Explain the basic principles of wind energy extraction.1911.1.1Write a short note on wind rose2021.1.1Write a short note on wind rose2111.4.1Write a short note on wind rose2111.4.1With neat diagram, explain vertical profiles of steady wind2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	time variati	on											
site having shape factor of 1.8 and capacity factor of 1 and draw the graph of wind distribution curve on graph sheet with appropriate scale.Image: Constraint of the state of the s	Give brief Cl	assifica	ation o	f wind	turbin	es.					1	2.1.2	
power plants.number of the power of the power plants.Briefly explain spatial variation of wind speed17,181Explain the basic principles of wind energy extraction.191Write the merits and limitations of wind power electric power202plants.211Write a short note on wind rose211With neat diagram, explain vertical profiles of steady wind224Explain in detail, momentum theory for rotating wake.222Using Betz model of a wind turbine, derive the expression for244	site having s graph of wi	shape f	factor	of 1.8	and ca	pacity	factor	of 1 a	and draw the	14	1	1.1.1	
Explain the basic principles of wind energy extraction.1911.1.1Write the merits and limitations of wind power electric power2021.1.1plants.2111.4.1Write a short note on wind rose2111.4.1With neat diagram, explain vertical profiles of steady wind2242.1.2Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1			ote or	n right	ofw	vay fo	r wind	d turk	oine electric	15,16	1	1.4.1	
Write the merits and limitations of wind power electric power2021.1.1plants.2111.4.1Write a short note on wind rose2111.4.1With neat diagram, explain vertical profiles of steady wind2242.1.2Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	Briefly expl	ain sp	atial v	ariatio	n of w	vind sp	beed			17,18	1	1.4.1	
plants.2111.4.1Write a short note on wind rose2111.4.1With neat diagram, explain vertical profiles of steady wind2242.1.2Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	Explain the	basic	princi	ples of	wind	energ	gy extr	actior	ı.	19	1	1.1.1	
Write a short note on wind rose2111.4.1With neat diagram, explain vertical profiles of steady wind2242.1.2Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1		Write the merits and limitations of wind power electric power						ric power	20	2	1.1.1		
Explain in detail, momentum theory for rotating wake.2221.1.1With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1							21	1	1.4.1				
With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	With neat diagram, explain vertical profiles of steady wind						22	4	2.1.2				
With neat diagram, explain stall control2321.1.1Using Betz model of a wind turbine, derive the expression for2442.4.1	Explain in detail, momentum theory for rotating wake.							22	2	1.1.1			
									23	2	1.1.1		
	-				turbir	ne, de	rive t	he ex	pression for	24	4	2.4.1	

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1	5	3,4	1.2.1, 2.1.1	1.1, 2.1	1,2
Assignment 2	5	3,4	2.1.2, 4.1.1	2.1, 4.1	2, 4

Faculty Incharge:

Dr. Sangamesh Goudappanavar

BASAVESHWAR ENGINEERING COLLEGE BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY

Environmental Studies COURSE PLAN

Title of	:	Environmental Studies	Course Code	:	21UBT523C/21UBT623C
Course					
Credits	:	01	Contact Hours /	•••	01
			Week		
Total Hours	:	15	Tutorial Hours	••	00
CIE Marks	••	50	SEE Marks	••	50
Semester	:	V	Year	:	2023-24

Course Objectives:

	The Course objectives are:
1	To make familiarize with various energy resources.
2	To understand environmental pollutions and its effects, and to implement sustainable future in the work place.
3	To gain knowledge of various current environmental issues.
4	To implement different waste management techniques .

Course Outcomes:

	At the end of the course the student should be able to:
1	Recognize energy resources and its uses.
2	Understand pollution and its effects on environment and to implement sustainable future in the work place.
3	Understand current environmental issues.
4	Apply the waste management techniques in various fields

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10		PO 12	PSO 1	PSO 2	PSO 3
	Programme Outcomes Course Outcomes															
The	e students will be able to:															
1	Recognize Energy resources and its uses.	2	-	-	-	-	2	3	-	-	-	-	3	1	-	-
	Understand pollution and its effects on environment and to implement sustainable future in the work place.	2	-	-	-	-	2	3	-	-	-	-	3	1	-	_
3	Understand current environmental issues.	1	-	-	-	-	2	3	-	-	-	-	3	1	-	-
	Apply the waste management techniques in various fields	1	-	-	-	-	3	2	-	-	-	-	3	1	-	1

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO 1: Engineering knowledge: Applytheknowledgeof mathematics,science,engineeringfundamentals,and anengineering specialisation for the solution of complex engineering problems.

Competency	Indicators
1.1 Demonstrate competence in basic sciences	1.1.1 Apply fundamentals of natural science to an engineering problem
1.2 Demonstrate competence in engineering fundamentals	1.2.1 Apply fundamental engineering concepts to solve engineering problems
1.3 Demonstrate competence in specialized engineering knowledge to the program	1.3.1 Apply Biotechnology engineering concepts to solve engineering problems.

PO 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

Competency	Indicators
 6.1 Demonstrate an ability to describeengineering roles in a broader context, e.g. pertaining to the environment, health, safety, legal and public welfare 	6.1.1 Identify and describe various engineering roles; particularly as pertains to protection of the public and public interest at the global, regional and local level

6.2 Demonstrate an understanding of professional engineering regulations, legislation and standards	6.2.1 Interpret legislation, regulations, codes, and standards relevant to your discipline and explain its contribution to the protection of the public

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Competency	Indicators
	 7.1.1 Identify risks/impacts in the life- cycle of an engineering product or activity 7.1.2 Understand the relationship between the technical, socio-economic and environmentaldimensions of sustainability
7.2 Demonstrate an ability to apply principles of sustainable design and development	 7.2.1 Describe management techniques forsustainable development 7.2.2 Apply principles of preventive engineering and sustainable development to an engineering activityor product relevant to the discipline

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Competency	Indicators
12.1 Demonstrate an ability to identify gaps inknowledge and a strategy to close these gaps	12.1.1 Describe the rationale for the requirement for continuing professional development
	12.1.2 Identify deficiencies or gaps in knowledge and demonstrate an ability to source information to closethis gap
12.2 Demonstrate an ability to identify changing trends in engineering knowledge and practice	 12.2.1 Identify historic points of technological advance in engineering that required practitioners to seek education in order to stay current 12.2.2 Recognize the need and be able to clearly explain why it is vitally important to keep current regarding new
	developments in your field

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Unit Learning Outcomes (ULO):

Unit Learning Outcome (ULO)	СО	BLL	PI
			addressed
Recognize the importance of EIA & energy resources	1	1	7.1.1
Understand pollution and its effects on environment and to	2	1	7.2.2
implement sustainable developments in future.			
Understand current environmental issues.	3	1	6.1.1,
			6.2.1
Implement the knowledge in the waste management techniques.	4	1	6.2.1,
			7.2.1,
			7.2.2

Course Content:

Units	Hours Topic to be covered		Mode of Delivery
	Required		
UNIT-I	01	Human activities and their impacts	Chalk and talk in
			classroom/Lecture
			combined with discussions
	01	Environmental impact assessment and the	Chalk and talk in
		Environmental impact statements	classroom
	01	Renewable Energyresources Solar, Wind,	Chalk and talk in
		Hydropower, Tidal, Ocean thermal, Geo	classroom/Lecture
		thermal, Biomass-Biogas, Biodiesel,	combined with discussion
		Bioethanol, Hydrogen as fuel	
	01	Non renewable Energyresources: Coal,	Chalk and talk / Group
		Petroleum, Natural gas, Nuclearenergy	Discussion
UNIT-II	01	Environmental Pollution:	Chalk and talk in
		Water pollution, water quality standards,	classroom/Lecture
		water borne diseases, Fluoride problem,.	combined with discussion
	01	Air pollution, Noise pollution. Effect of	Chalk and talk in
		electromagnetic waves	classroom/Lecture
			combined with discussion
	01	Sustainable future:	Chalk and talk in
		Concept of sustainable development, threats	classroom/Lecture
		to sustainability, strategies for sustainable	combined with discussions
		development.	
	01	Environment economics – concept of green	Chalk and talk in
		building, Circular economy.	classroom
UNIT-	01	Current Environmental Issues of	Chalk and talk in
III		concern-	classroom/Lecture
		Greenhouse Effect- Greenhouse gases	combined with discussion
	01	Global Warming, Climate change, ozone	Chalk and talk / Group
		layer depletion	Discussion
	01	Acid rain, Eutrophication. Environmental	Chalk and talk in
		policy legislation rules & regulations	classroom/Lecture
			combined with discussion

UNIT- IV	01	Fundamentals of Waste management: Solid waste management: Sources,	Chalk and talk in classroom/Lecture		
1.		classification, characteristics, collection	combined with discussion		
	01	Transportation, disposal, and processing	Chalk and talk in		
		methods for waste management.	classroom/Lecture		
			combined with discussions		
	01	Hazardous waste management and	Chalk and talk in		
		handling.	classroom		
		Concept of waste water treatment,			
		Bioremediation			
	01	Industrial waste management (Case	Chalk and talk in		
		studies:Cement, plastic, chemical, E-waste,	classroom/Lecture		
		food & construction industry waste	combined with discussion		
		management).			

Reference Books:

- 1. Benny Joseph "Environmental Studies" Tata McGraw Hill, 2005
- 2. Dr. D. L. Manjunath, "Environmental Studies" Pearson Education, 2006
- 3. Koushik and Koushik "Environmental Science & Engineering" New Age International Publishers, New Delhi, 2006
- 4. Meenakshi "Environmental Science & Engineering" Pranticce Hall of India, 2006

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	50	50
Total	100	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	CA	PO
Assignment 1	5 marks [1,2,3 & 4	6.1.1, 6.2.1.	6 and	1,6,7 & 12
	Solve any			7	
	two years		7.1.1,7.2.1,7.2.2		
	SEE				
	question				
	papers]				
Assignment 2	Presentation	1,2,3 & 4	6.1.1, 6.2.1.	6 and	1,6,7 & 12
	[Topics			7	
	covering all		7.1.1,7.2.1,7.2.2		
	the units]				